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Abstract

A new approach to take into account the effects of variable physical properties on turbulence is suggested. It allows

to choose freely the turbulent closure model for conventional terms due to velocity fluctuations and to describe coher-

ently the additional terms due to density fluctuations. Numerical calculations based on the suggested approach have

been performed for carbon dioxide flowing within mini/micro channels under cooling conditions. The numerical pre-

dictions show that the effects due to density fluctuations are smaller than it could have been initially supposed and that

the heat transfer impairment for mini/micro channels, which some experiments seem to highlight, is not completely

explained by the considered model.
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1. Introduction

Increasing attention to environmental issues induces

to reconsider natural fluids, in particular carbon dioxide,

as alternative refrigerants [1]. The high working pressure

and the favorable heat transfer properties of carbon

dioxide allow to use extruded flat tubes with circular/

elliptical ducts, which have diameters much smaller than

usual ducts (d < 2 mm) [2]. Size reduction justifies the

conventional name of mini/micro channels. Inside each

mini/micro channel, the gas cooling process takes place

without phase change, since the working fluid is at a

supercritical pressure.
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The highest temperature at which condensation/

evaporation occurs is known as the critical temperature.

Both theoretical and experimental evidences exist which

indicate that the idea of a definite critical point, with

unambiguous critical temperature, pressure and volume

is probably only an approximation; actually there ap-

pears to be a critical region [3]. For each supercritical

pressure, the value of temperature at which the specific

heat capacity reaches a peak is called pseudo-critical

temperature Tpc. When the bulk temperature decreases

below the pseudo-critical temperature for the considered

supercritical pressure, the fluid instantaneously changes

from a gas-like state to a liquid-like state [4]. This phe-

nomenon effects both convective heat transfer [5] and

turbulent diffusivities [6].

A comprehensive review of heat transfer and pressure

drop characteristics in the critical region for carbon
ed.
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Nomenclature

A surface (m2)

b dimensionless factor (–)

Bo buoyancy parameter (–)

cp specific heat capacity (Jkg�1K�1)

C robust correlation coefficient (–)

d diameter of mini/micro channel (m)

e dimensionless error (–)

f generic thermophysical properties

F corrective tensor due to density fluctuations

(–)

g acceleration due to gravity (ms�2)

G mass flow rate (kgs�1)

Gr Grashof number (–)

h specific enthalpy (Jkg�1)

H generic source term

I identity matrix (–)

k turbulent kinetic energy (Jkg�1)

L length of the mini/micro channel (m)

M identifier of turbulent closure model

N natural number

Nþ set of positive natural numbers

p pressure (Pa)

Pr Prandtl number (–)

q thermal flux (Wm�2)

Q set of fractional numbers

r radial coordinate (m)

R set of real numbers

Re Reynolds number (–)

S stress tensor (Nm�2)

T temperature (K)

u velocity component along axial direction

(ms�1)

v velocity component along radial direction

(ms�1)

V volume (m3)

w velocity vector (ms�1)

x axial coordinate (m)

y distance from the wall (m)

z generic quantity

Greek symbols

a convective heat transfer coefficient

(Wm�2K�1)

b modified compressibility factor (kgJ�1)

d Kronecker symbol

� turbulent dissipation rate (m2s�3)

/ correction factor due to density fluctuations

(–)

u non-ideal gas parameter (–)

U rounding function

k thermal conductivity (Wm�1K�1)

l dynamic viscosity (Nsm�2)

g radial location of pseudo-critical tempera-

ture (m)

x generic solving variable

X computational domain

q density (kgm�3)

r intensity index (Jkg�1)

h temperature difference (K)

v ratio of geometric progression (–)

f sign of enthalpy gradient (–)

Subscripts and superscripts

a axial/center-line condition

b bulk condition

BR Bellmore and Reid

c critical condition

exp experimental condition

l laminar condition

L referring to whole length of mini/micro

channel

k referring to thermal conductivity

m minimum value

l referring to dynamic viscosity

RNG RNG k–� model

SKE standard k–� model

t turbulent condition

T total/stagnation condition

w wall condition

Notation

ox partial derivative along axial direction =

o/ox

or partial derivative along radial direction =

o/or

z1 � z2 diadic product

hzi � �z time averaging
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dioxide can be found in [7]. Krasnoshchekov et al. [8]

carried out the first experimental study on heat transfer

characteristics during turbulent flow in a horizontal tube

with carbon dioxide at supercritical pressure under cool-

ing conditions. Baskov et al. [9] found that their mea-

surements for vertical tube were systematically lower

than those calculated using the previous formula. Petrov
and Popov [10] numerically developed a correlation for

configurations where free convection is negligible and

found good agreement with experimental data. More re-

cently, Pettersen et al. [11] experimentally found for ex-

truded flat tubes with mini/micro channels and carbon

dioxide at supercritical pressure that a usual correla-

tion, originally developed for constant properties, can
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be suitably applied. Pitla et al. [12] proposed that this con-

ventional correlation can be improved by averaging the

results obtained with constant properties evaluated

at both wall and bulk temperatures. Finally, Yoon

et al. [15] found that all previous studies generally

under-predict their measurements and proposed a new

phenomenological correlation, which adopts the same

functional dependence originally proposed by Krasnosh-

chekov et al. [8].

Liao and Zhao [13] investigated a single horizontal

mini/micro channel with supercritical carbon dioxide

and found that size reduction causes a heat transfer

impairment, which cannot be predicted by correlations

developed for normal-sized ducts. Liao and Zhao [13]

measured the variation of Nusselt number Nub with

the bulk mean temperature for various tube diameters,

keeping the Reynolds number Reb, the Prandtl number

Prb and the difference between the bulk and wall temper-

ature fixed. The Nusselt number was found to decrease

as the tube size became smaller and this means that a

heat transfer impairment due to size reduction could

exist. Liao and Zhao pointed out that buoyancy effects

could be responsible for this phenomenon. Theoretical

considerations lead to the following criterion for negligi-

ble buoyancy effects in horizontal tubes [14]:

Gr

Re2b
¼ qw

qb

� 1

� �
gd
u2b

< 1� 10�3. ð1Þ

The Grashof number Gr represents the relative

strength of secondary flow induced by the buoyancy

force. Considering that the buoyancy parameter

Gr=Re2b is proportional to the tube diameter d, for each

operative configuration a critical diameter exists and all

tubes characterized by smaller diameters are free of

buoyancy effects. Liao and Zhao found that, for their

experimental tests, this critical diameter is comparable

to the diameter, which conventionally constitutes the

upper limit for mini/micro channels. They conclude that

the heat transfer impairment could be caused, partially

at least, by the fact that the buoyancy effect becomes less

important for small tubes. In particular, in the region

near the pseudo-critical temperature, the experimental

data show wall thermal fluxes much lower than those

predicted by the correlation of Petrov and Popov [10].

Liao and Zhao suggest that the correlation fails when

free convection becomes weak or absent, because it

was developed based on data for large-diameter tubes

where this effect should be significant.

This explanation is not completely satisfactory. For

horizontal tubes, buoyancy causes circumferential varia-

tions of heat transfer [5]. Some evidences exist that

buoyancy reduces the total heat transfer in horizontal

tubes, though not in a very pronounced manner [6].

Firstly, if tested mini/micro channels are characterized

by negligible buoyancy effects, a small increase of heat

transfer should be expected comparing with large-
diameter tubes, contrary to experimental data. Secondly

the correlation of Petrov and Popov does not take into

account buoyancy effects. In a preliminary work, Petrov

and Popov [16] numerically solved a system of equations

which included also buoyancy in order to reproduce the

experimental results of Baskov et al. [9], but, in the ori-

ginal paper, where their correlation was proposed, the

buoyancy was dropped from the system of equations

and no buoyancy parameter was included in the final

interpolation formula [10]. The effect of free convection

was considered only in a following paper [17].

According to experimental data, mini/micro channels

for the considered conditions reveal a peculiar behavior

in comparison with large-diameter tubes, i.e. heat trans-

fer impairment, which has not been completely ex-

plained yet. Following the work of Petrov and Popov,

the present work aims to numerically investigate the tur-

bulent convective heat transfer in mini/micro channels

for carbon dioxide at supercritical pressure. A new ap-

proach to take into account the effects of variable phys-

ical properties on turbulence is proposed, in order to

widen the available numerical tools. Three numerical

models are solved for a set of operating conditions

which is wide enough for testing their suitability to ex-

plain heat transfer impairment in considered conditions.

Finally, a comparison with phenomenological correla-

tions developed for normal-sized ducts is also reported.
2. Physical models

2.1. Conventional approaches

Since the explanation of Liao and Zhao for heat

transfer impairment lies on the fact that buoyancy is

negligible for some working conditions of mini/micro

channels, in the following only pure forced convective

regime will be considered. This means that the limiting

condition given by Eq. (1) is exactly verified.

Because of size reduction, the ratio between surface

roughness and characteristic diameter increases. Experi-

mental data for aluminum mini/micro channels, with the

smallest diameter considered in the following, show only

negligible discrepancies (6%) between measured pressure

drops and Blasius�s correlation, which was developed for

hydraulically smooth regime [11]. It is reasonable to sup-

pose that stainless steel mini/micro channels considered

by Liao and Zhao were characterized by lower rough-

ness and they can be considered hydraulically smooth

over the entire investigated range of Reynolds numbers.

Turbulent forced convection heat transfer is de-

scribed by the instantaneous conservation equations of

continuity, momentum and energy. When the physical

properties rapidly change with temperature, as happens

near the critical point, the turbulent regime is character-

ized by high-frequency fluctuations of physical proper-
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ties, in addition to the usual fluctuations of velocity

components and temperature. Reynolds averaging, i.e.

time averaging, of governing equations produces addi-

tional unknown quantities, which must be calculated

in terms of solving variables. In particular, effects due

to density are stronger than those due to diffusivities,

such as dynamic viscosity and thermal conductivity [18].

On introducing the Reynolds decomposition for

velocity u ¼ �uþ u0 and density q ¼ �qþ q0 into instanta-

neous conservation equations and time-averaging the re-

sults, the governing equations of continuity, momentum

and energy are obtained, namely

r � �qð�uþ �u�Þ½ � ¼ 0; ð2Þ
r � �q�u� ð�uþ �u�Þ½ � ¼ �rp þr � S; ð3Þ
r � �qhTð�uþ �u�Þ

� �
¼ �r � qþr � ðS�uÞ; ð4Þ

where �u� ¼ q0u0=�q is the characteristic velocity for den-

sity fluctuations, S = Sl + St is the effective stress tensor

and q = ql + qt is the effective thermal flux. Laminar and

turbulent components for both effective stress tensor

and effective thermal flux are defined as follow

Sl ¼ lðr�uþr�uTÞ � ð2=3lr � �uÞI; ð5Þ
St ¼ ��qu0 � u0 � q0u0 � �u� q0u0 � u0; ð6Þ
ql ¼ �krT ; ð7Þ

qt ¼ �qh0Tu
0 þ q0h0T�uþ q0h0Tu

0. ð8Þ

The last equation can be easily simplified by neglect-

ing the difference between stagnation enthalpy and sim-

ple enthalpy. Some of the previous terms due to

turbulent fluctuations can be expressed by defining tur-

bulent viscosity and gradient-diffusion (see [19] for de-

tails), namely

� �qu0 � u0 ¼ ðlt=lÞSl; ð9Þ
�qh0u0 ¼ ðkt=kÞql. ð10Þ

A tensor Fl can be introduced to describe the effects

due to density fluctuations on the effective stress tensor

S = (I + lt/lF
l)Sl. In the same way, a tensor Fk can be

introduced to describe the effects due to density fluctua-

tions on the effective thermal flux q = (I + kt/kF
k)ql,

namely

Fl ¼ Iþ q0u0 � �uþ q0u0 � u0
� �

�qu0 � u0
� ��1

; ð11Þ

Fk ¼ Iþ q0h0�uþ q0h0u0
� �

� h0u0
	

�qh0u0 � h0u0
� �

. ð12Þ

In particular, density fluctuations effect both diffusive

and convective terms into Eqs. (2)–(4). Since Fl is not

symmetric, then the effective stress tensor S is not sym-

metric either.

Keeping in mind the geometrical configuration real-

ized by mini/micro channels, a two-dimensional compu-

tational domain X 2 R2 will be considered and a set of

cylindrical coordinates will be adopted to describe it,
namely X ¼ fðx; rÞ 2 R2 : 0 6 x 6 L; 0 6 r 6 Rg. The

velocity vector components will be accordingly renamed
�u ¼ ð�u;�vÞ. Even though the problem concerned can have

local distortions and variations in the velocity and tem-

perature field, the boundary layer theory [20] can be con-

sidered as a preliminary modeling approach in order to

reduce the computational demand and to increase the

number of simulations needed by statistical regression.

Because of these simplifying assumptions, the momen-

tum and energy equation can be simplified to yield the

following expressions

rxr � �qð�uþ �u�Þ½ � ¼ 0; ð13Þ

rxr � �q�uð�uþ �u�Þ½ � ¼ � dp
dx

þ 1

r
o

or
ðrSxrÞ; ð14Þ

rxr � �qhTð�uþ �u�Þ
� �

¼ þ 1

r
o

or
ðr�uSrx � rqrÞ. ð15Þ

Simplifying the laminar stress tensor, then all the

components of effective stress tensor can be expressed

in terms of the transverse velocity gradient. In the same

way, all the components of effective thermal flux can be

expressed in terms of transverse temperature gradient.

The previous simplifications yield

S �
ltF l

xror�u ðlþ ltF l
xxÞor�u

ðlþ ltF l
rrÞor�u ltF l

rxor�u


 �
; ð16Þ

q � ktF k
xrorT ; ðkþ ktF k

rrÞorT
� �T

. ð17Þ

In the following some components of the tensors,

which describe density fluctuations, are reported because

they are involved in the calculation of effective diffusive

terms Sxr, Srx and qr in simplified Eqs. (14) and (15),

namely

F l
xx ¼ 1þ q0u0�v

�qu0v0
þ q0u0v0

�qu0v0
; ð18Þ

F l
rr ¼ 1þ q0v0�u

�qu0v0
þ q0u0v0

�qu0v0
; ð19Þ

F k
rr ¼ 1þ q0h0�v

�qh0v0
þ q0h0v0

�qh0v0
. ð20Þ

The off-diagonal components of the effective stress

tensor may differ, i.e. Sxr 5 Srx, because in general

F l
xx 6¼ F l

rr. The term F l
xx directly effects the turbulent vis-

cosity, while the term F l
rr describes the effect of density

fluctuations on viscous heating, which can be usually

neglected. For this reason, all considered models assume

F l
rr � 1 and consequently Srx � ð1þ lt=lÞSl

rx ¼ ð1þ
lt=lÞSl

xr.

In order to quantify the importance of the density

fluctuations along radial direction, an auxiliary radial

velocity �v0 is introduced, which represents the radial

velocity field obtained neglecting density fluctuations.

Assuming fixed the mean density distribution, this aux-

iliary function satisfies the following equation
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o

ox
ð�q�uÞ þ 1

r
o

or
ðr�q�v0Þ ¼ 0. ð21Þ

Along the axial direction, the effect of density fluctu-

ations can be clearly neglected j�u�j 	 j�uj. Along radial

direction, considering Eqs. (13) and (21) and applying

proper boundary conditions, a relation among actual,

characteristic and auxiliary radial velocities can be

found �vþ �v� ¼ �v0. In the region near the critical point,

strong density fluctuations ensure j�v�j 
 j�v0j. For all

the following calculations, this condition has been veri-

fied for at least one order of magnitude. In this case,

an easier correlation yields �vþ �v� � 0 and it can be ap-

plied to simplify Eqs. (18) and (20).

Finally, density fluctuations must be related to veloc-

ity fluctuations involved into turbulence closure models.

The key idea is to expand the equation of state q(h,p)
by considering fluctuations of independent variables

q0 ¼ oh�qjph0 þ op�qjhp0. Neglecting pressure variations,

the residual term can be expressed by means of a modi-

fied compressibility b ¼ �oh�qjp=�q, in order to find the

final correlation q0 ¼ ��qbh0. This correlation can be ap-

plied into the definition of characteristic velocity due to

density fluctuations �u� ¼ �bh0u0, which influences the

convective terms, and into the definitions of correction

factors F l
xx and F k

rr, which influence the diffusive terms,

and are defined as

F l
xx ¼ 1� b2 h

0u0h0v0

u0v0
� b

h0u0v0

u0v0
; ð22Þ

F k
rr ¼ 1� b2h0h0 � b

h0h0v0

h0v0
. ð23Þ

How physical properties varying with temperature

influence the turbulent diffusivity expressions has not

been systematically investigated [6]. Therefore, many

different assumptions have been proposed for models

based on the mixing length concept, which were origi-

nally developed for fluids with constant properties [20].

Semi-empirical correlations exist which express turbu-

lent diffusivities as functions of a dimensionless distance

from the wall yþ ¼ ðR� rÞ ffiffiffiffiffiffiffiffiffi
�qxsw

p
=lx, which can be use-

ful to characterize the fluid–wall interaction [20]. Some

authors assumed that the original correlations may be

used without changes, if proper values of physical prop-

erties are considered to compute dimensionless distance

y+ [21–23].

Petrov and Popov applied the mixing length model to

calculate the turbulent diffusivities. They considered an

additional corrective procedure to compute effective val-

ues, based on the discrepancies between shear stresses

computed with constant and variable properties. They

totally neglected the effects due to density fluctuations

and so implicitly assumed F l
xx ¼ F k

rr ¼ 1.

Bellmore and Reid applied the mixing length model

too and adopted an integral formulation in order to take

into account variable thermophysical properties [24].
They proposed an innovative method to include density

fluctuations in the equations of turbulent transport

based on mixing length theory. The mixing length theory

is based on two heuristic assumptions [20]

hu0v0i ¼ þCuvhju0jihjv0ji; ð24Þ
hh0v0i ¼ �fChvhjh0jihjv0ji; ð25Þ

where f ¼ or�h=jor�hj, 0 < Cuv < 1 and 0 < Chv < 1. The

signs in both expressions are due to experimental evi-

dence. In particular the sign in Eq. (24) depends on

the fact that v is the velocity component aligned along

the radial direction pointing towards the wall. The coef-

ficients Cuv and Chv are called robust correlation

coefficients. Each average absolute deviation can be

expressed by transverse velocity gradient or transverse

enthalpy gradient: this means hju0ji ¼ lujor�uj, hjv0ji ¼
lvjor�uj and hjh0ji ¼ lhjor�hj. Introducing these expressions

into the previous assumptions given by Eqs. (24) and

(25) and grouping the unknown terms, two essential

quantities emerge: the mixing length lm = (Cuvlulv)
1/2

and the turbulent Prandtl number Prt = Cuvlu/(Chvlh),

namely

hu0v0i ¼ l2mjor�uj
2
; ð26Þ

hh0v0i ¼ �fðl2m=PrtÞjor�hjjor�uj. ð27Þ

Both quantities are supplied by turbulence closure

models, based on the mixing length concept. Bellmore

and Reid essentially interpreted the definitions of corre-

lation coefficients due to robust statistics in a factorized

form and this yields

hu0v0i ¼ DuDv; ð28Þ
hh0v0i ¼ DhDv; ð29Þ

where Du = b1hju 0ji, Dv = b2hjv 0ji and Dh = �fb3hjh 0ji.
The congruence with the original heuristic assumptions

implies that b1b2 = Cuv and b2b3 = Chv but these con-

straints are not sufficient to unambiguously determine

the constants bi. Eq. (26) suggests that the velocity fluc-

tuations along both directions produce comparable

effects. The condition Du = Dv allows us to produce an

additional constraint b1lu = b2lv. In this way, the values

of the constants are found, namely b1 = (Cuvlv/lu)
1/2,

b2 = (Cuvlu/lv)
1/2 and b3 ¼ ChvC

�1=2
uv ðlv=luÞ1=2. The main

advantage of recasting Eqs. (28) and (29) is that each

function Do depends only on the fluctuations of the same

variable o 0 and it can be calculated by means of the mix-

ing length theory. In analogy with this factorization,

Bellmore and Reid proposed the following general

decomposition

hðu0Þn1ðv0Þn2ðh0Þn3i ¼ ðDuÞn1ðDvÞn2ðDhÞn3 ; ð30Þ

where ni 2 Nþ. For example, considering n1 = n3 = 1

and n2 = 0, the expression for turbulent thermal diffusiv-

ity along axial direction can be found, namely
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hh0u0i ¼ DhDu ¼ �fðChvlv=luÞhjh0jihju0ji
¼ �fChuhjh0jihju0ji. ð31Þ

Similarly we can proceed with all turbulent terms in-

volved into Eqs. (22) and (23), which can be calculated

by means of the general decomposition given by Eq.

(30). Recalling Eqs. (29) and (31), the characteristic

velocity due to density fluctuations can be expressed as

F l
xx ¼ F k

rr ¼ /BR ¼ 1þ fbrBR � b2r2
BR; ð32Þ

�u�BR ¼ �v�BR ¼ fb l2mjor�uj=Prt
� �

jor�hj; ð33Þ

where rBR ¼ ðlm=PrtÞjor�hj can be considered an index of

intensity for density fluctuations. We can now discuss

the effects due to density fluctuations. Since brBR is usu-

ally a small quantity also near the critical point, we can

suppose /BR � 1 + fbrBR. This means that during cool-

ing conditions (f < 0), density fluctuations reduce turbu-

lent diffusivities (/BR < 1), while during heating

conditions (f > 0) they substantially increase turbulent

diffusivities (/BR > 1). Additional convective terms

along the axial direction are negligible. The radial veloc-

ity field in absence of density fluctuations �v0 can be dis-

cussed by Eq. (21). Let us define a vectorial velocity in

the absence of density fluctuations �u0 ¼ ð�u;�v0Þ. For

mini/micro channels, the density gradient can be reason-

ably assumed orthogonal to this velocity �u0 � rq � 0, be-

cause �u0 is approximately oriented along streamlines. In

this way, Eq. (21) easily yields that �f�v0 P 0. Recalling

that �v � ��v� and f�v� / ðor�hÞ2 P 0 by definition, a simi-

lar correlation for the effective radial velocity is found

�f�v P 0. Since j�vj 
 j�v0j, then density fluctuations

increase convective radial terms both during cooling

conditions (�v 
 �v0 P 0) and heating conditions (�v 	
�v0 6 0).

2.2. Proposed turbulence closure model

Both previous models use turbulent models based on

the mixing length concept and they have some draw-

backs [19]. Firstly, they strongly depend on the geometry

of the considered flow to formulate practical relations

for the mixing length, hence they are not general. Sec-

ondly, they prescribe that turbulent diffusivities be zero

where there is no velocity gradient, as it happens for

the centerline of mini/micro channels, although this

clashes with the experimental evidence [19]. Concerning

variable physical properties, the previous models sub-

stantially adopt common correlations by reducing the

problem to calculate a modified y+, but it should be bet-

ter to consider differential equations. Finally, only the

model of Bellmore and Reid considers the density fluctu-

ations, but it requires the average absolute deviations,

which are not accessible by most widespread turbulence

models. Moreover, Eq. (31), which has been deduced

according to the generalized decomposition given by
Eq. (30), is in contrast with the gradient-diffusion

hypothesis because it depends on the radial enthalpy

gradient instead of the axial one as expected because it

involves the axial velocity component.

A different approach is proposed. Within the frame-

work of the mixing length theory, the turbulence closure

model can be considered a tool which allows us to calcu-

late robust correlation coefficients Cuv ¼ l2m=ðlulvÞ and

Chv ¼ l2m=ðPrtl2vÞ. Analogously, when Eq. (31) is consid-

ered, the general decomposition reduces to suppose

Chu = Chvlv/lu. The coefficients bi involved in factorized

heuristic assumptions given by Eqs. (28) and (29)

can be expressed as functions of second-order mixed

robust correlation coefficients Chv, Chu and Cuv, which

are the non-zero lowest-order coefficients. Substituting

these expressions into Eq. (30), a modified expression

is found

hðu0Þn1 ðv0Þn2ðh0Þn3i ¼ ð�fÞn3Cq1
hvC

q2
huC

q3
uvhju0ji

n1hjv0jin2 hjh0jin3 ;
ð34Þ

where qi 2 Q is defined as qi ¼
P3

j¼1ð1� 2dijÞnj=2 and

dij is the Kronecker operator. Mathematically, the gen-

eral decomposition given by Eq. (30) is equivalent to

suppose that higher-order robust correlation coefficients

are proper combinations of lower-order ones. Since, by

definition ni ¼
P3

j¼1ð1� dijÞqj and recalling the expres-

sions for lower-order correlation coefficients given by

Eqs. (28), (29) and (31), the previous decomposition

can be modified as

hðu0Þn1 ðv0Þn2ðh0Þn3i ¼ ð�fÞn3 jhh0v0ijq1 jhh0u0ijq2hu0v0iq3 .
ð35Þ

This correlation has been rigorously demonstrated

within the framework of the theory developed by Bell-

more and Reid and so it can be considered equivalent

to the decomposition given by Eq. (30). The main

advantage is that it involves only quantities that are cal-

culated by all turbulence closure models because they

emerge from time averaging of flow equations with con-

stant properties. Essentially the previous relation can be

considered as a constitutive hypothesis assuming that

terms due to density fluctuations depend on usual terms

due to velocity fluctuations. In the following, the turbu-

lent viscosity hypothesis given by Eq. (9) and the gradi-

ent-diffusion hypothesis given by Eq. (10) will be

considered in order to produce a meaningful example

without loss of generality. Applying Eq. (35) to all tur-

bulent terms involved into Eqs. (22) and (23), we find

again the same formal expression for the corrective fac-

tor / which influences effective diffusivities given by Eq.

(32), but with a different intensity index r, given by

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2t
�qlt

joxTorT j
jor�uj

s
. ð36Þ
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We can proceed in the same way for the characteristic

velocity, obtaining

�u� ¼ fbðkt=�qÞjoxT j 	 �v� ¼ fbðkt=�qÞjorT j. ð37Þ

Since these relations involve the temperature gradi-

ent, contrarily to previous ones which involve enthalpy

gradient, the effects due to compressibility must be dis-

cussed. For both axial and radial direction, the generic

component of the enthalpy gradient can be expressed

by means of temperature and pressure changes

oi�h ¼ cpT ½oiT=T � uoip=p�, where cp is the specific heat

capacity cp ¼ oT�hjp and the dimensionless parameter u
takes into account non-ideal gas effects, namely

u ¼ ðbcpT � 1Þ=ð�qcpT=pÞ. In all the following calcula-

tions, this parameter is included over the range

0 < u < 0.21. Since the relative temperature changes

are much greater than relative pressure changes oiT/

T 
 oip/p, then the compressibility effects on enthalpy

can be neglected and an approximate relation yields

oi�h � cpoiT . For comparing the previous results with

those obtained by Bellmore and Reid, Eqs. (32) and

(33) will be directly generalized by expressing mixing

length and turbulent Prandtl number as functions of tur-

bulent diffusivities. Recalling that lm ¼ l1=2
t ðqjor�ujÞ�1=2

and Prt ¼ ltjor�hjðktjorT jÞ
�1
, the generalized expressions

for the intensity index and for the components of char-

acteristic velocity become

rBR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2t
�qlt

jorT j2

jor�uj

s
; ð38Þ

�u�BR ¼ �v�BR ¼ fbðkt=�qÞjorT j. ð39Þ

Despite the simplicity of the procedure, Eqs. (38) and

(39) can be calculated by any turbulence model too. In

this second case, the intensity index rBR depends only

on radial temperature gradient, while the intensity index

r calculated by the proposed approach depends on the

temperature gradient along both directions. If density

fluctuations are due to enthalpy fluctuations and the lat-

ter ones satisfy the gradient-diffusion hypothesis by

given Eq. (10), which is strongly anisotropic, it is not

clear why the effects due to density fluctuations should

be isotropic. Since the original formulation of Bellmore

and Reid was developed for boundary layer flow, the

generalized Eqs. (38) and (39) overestimate the effect

of axial density fluctuations and they are not universally

valid. Here an essential feature of the proposed model

emerges. Eqs. (36) and (37) involve the axial gradient

to predict the effects due to density fluctuations along

the axial direction. This feature essentially predicts a

lower effect of density fluctuations on turbulent diffusiv-

ities since r 	 rBR, because usually joxTj 	 jorTj. Con-
cerning the effects on convective terms, the two

formulations are formally equivalent for the radial direc-

tion �v� ¼ �v�BR, while they again differ for the axial direc-

tion �u� 	 �u�BR. Since the latter effect is negligible in the
considered application, the essential difference between

the two approaches for simulation of mini/micro chan-

nels lies in the description of the effective diffusivities

and, in particular, in the fact that j/ � 1j 	 j/BR � 1j.
Any turbulence closure model can be applied to cal-

culate turbulent diffusivities into Eqs. (36) and (37). In

the following, two 2-equation models will be considered

in order to compare the effects due to the description of

turbulent diffusivities. The additional terms due to fluc-

tuating properties within these equations can be ne-

glected as a first approximation, in order to reduce the

computational resources. The numerical results confirm

this approximation because there is a reasonable match

with experimental data or, at least, the experimental

data are not so accurate to properly discriminate the ef-

fects of this approximation. In particular, the standard

k–�model [26] and the RNG k–�model [28] were consid-

ered. Since both 2-equation models were formulated for

fully-developed turbulence, they are not usually applied

in the near-wall region (approximately 0 < y+ < 60),

where 1-equation model will be adopted [27].

At the inlet boundary, some unknown quantities,

which describe the fluid flow, are supposed uniformly

distributed along the radial direction: �uð0; rÞ ¼ u0,
�vð0; rÞ ¼ 0 and T(0, r) = T0. At the outlet boundary,

the only calculation unknown which was not considered

within inlet conditions, i.e. pressure, is imposed

p(L) = pL. At the wall boundary, a given thermal flux

orT = qw/k or, alternatively, a given wall temperature

T(x,R) = Tw is considered, while the velocity compo-

nents are set as �uðx;RÞ ¼ 0 and �vðx;RÞ ¼ 0. It is possible

to proceed in a very similar way for turbulent quantities

involved into 2-equation models [27].
3. Numerical discretization and solution procedure

The governing equations of continuity (13), momen-

tum (14) and energy (15) conservation were discretized,

according to the finite volume method [35,36]. The gen-

eral upwind scheme was adopted to calculate the con-

vective terms for all linearized equations [36].

Since for short mini/micro channels pressure drops

are negligible, the thermophysical properties can be con-

sidered as functions of temperature only. Piecewise lin-

ear approximations of the thermophysical properties,

given by the considered database [34], will be adopted

and the distribution of nodal values will be properly

chosen for ensuring the desired accuracy. In the follow-

ing calculations, the error thresholds are 0.3–5.6% for

heat capacity, 0.1–2% for thermal conductivity, 0.1–

0.5% for modified compressibility and 0.1–0.5% for both

density and dynamic viscosity.

An axially homogeneous mesh and a characteristic

length of the generic control volume Dx comparable to

the radial dimension was adopted. On the other hand,



Fig. 1. Effect of radial discretization on the solution. The

predicted profiles for specific heat capacity and fluid temper-

ature are both reported in a thin layer near the wall. Both

meshes are based on geometric progression. The coarse mesh,

which realizes yþw � 1, is not suitable to describe the peak in

specific heat. The reported markers are representative of grid

nodes.
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the radial discretization of the computational domain

should be very fine near the wall in order to solve the

equations over the laminar viscous sublayer (y+ < 5).

Usually the thickness of the control volume adjacent

to the wall Drw is determined such that the dimensionless

distance yþw of the centroid is approximately equal to one

[37]. This practice allows us to estimate the thickness of

the control volume adjacent to the wall as Drþw. Radially

homogeneous meshes would enormously increase the

computational time. For this reason, the thickness of

the control volume adjacent to the axis of the mini/micro

channel Dra is assumed much greater than previous

one Dra 
 Drw. A geometric progression with ratio

v = (R � Dra)/(R � Drw) can be assumed to properly

blend the previous extremes.

For turbulent convective heat transfer at supercritical

pressure near the critical point, the condition yþw � 1 is

not the only one and is not the most severe. Since the

easiest way to approximate the solution between two

consecutive nodal values is to consider a linear function

[36], an error could occur in estimating the physical

properties if too coarse meshes are considered. If very

high-density meshes are avoided [7], only a local grid

refinement can mitigate this problem [35]. The basic idea

is to guarantee that the temperature difference between

two adjacent control volumes is small enough to pro-

duce acceptable errors in estimating the maximum spe-

cific heat capacity. In this case, the limiting radial

discretization in the buffer region due to the pseudo-crit-

ical temperature is much more severe than that given

by low-Reynolds turbulence models: in particular,

Drc=Drþw < 0.18 for the reported calculations.

The greatest mesh used in the numerical simulations

reported further on is characterized by 118 radial nodes,

which are much less than those prescribed by single-pro-

gression high-density meshes [7]. However this radial

discretization step and a proper local grid refinement en-

ables one to produce mesh independent results and

numerical errors comparable with the accuracy of the

thermophysical database.

The discretized governing equations for continuity,

momentum and energy are solved sequentially by SIM-

PLE algorithm [27]. The relative convergence criterion is

equal to 1 · 10�3 for the validation cases [37], which are

characterized by fixed wall thermal flux, and it is equal

to 1 · 10�5 for the experimental runs, which are charac-

terized by fixed wall temperature. For each discretized

equation, a Gauss–Seidel linear equation solver is used

in conjunction with an algebraic multi-grid method to

solve the resulting scalar system of equations for the

solving variables [27]. In order to prevent divergence,

the velocity components in the momentum equations,

the temperature in the energy equation and the transport

properties are updated by corrective quantities smaller

than those due to pure calculation. Near the critical

point, Lee and Howell [37] suggested to iteratively renew
with an under-relaxation factor the thermophysical

properties too. This practice realizes a multi-level

under-relaxation which prevents strong instabilities

emerging when too coarse meshes are adopted to de-

scribe fluid flow near the critical point. If the mesh is

chosen according to previously discussed strategy, there

is no need for multi-level under-relaxation.
4. Results and discussion

4.1. Comparison with other predictions and

experimental data for the local heat transfer coefficient

The comparison with experimental measurements of

local heat transfer coefficients is meaningful for verifying

the reliability of the numerical results. Due to experi-

mental difficulties, there have been few radial tempera-

ture measurements inside a tube which involve the

pseudo-critical temperature. The experimental data for

a normal sized duct due to Wood and Smith [38] will

be considered. They considered an upward flow of car-

bon dioxide under heating conditions in a tube with

common diameter (d = 22.91 mm) and measured radial

temperature profiles by keeping the wall thermal flux

fixed. The same set of data has been considered for val-

idation purposes by Lee and Howell [37]. In this case,

the effect of gravity has been added to the momentum

equation, since Eq. (1) did not hold for this case.

In Fig. 1 the effect of the radial discretization on the

solution is reported. The mesh based on low Reynolds-

number models shows to be too coarse for describing
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the peak of specific heat capacity and, consequently, to

produce misleading conclusions. In fact, the coarse mesh

could lead one to think that the model of Bellmore and

Reid works better than it really does. The coarse mesh

shows a strong unstable behavior because the solution

process tries to cut off the peak in specific heat capacity,

which behaves like local numerical noise breaking the

smooth solution. This probably justifies the need of

multi-level under-relaxation in the numerical simula-

tions performed by Lee and Howell [37].

A comparison of predicted profiles of dimensionless

temperature calculated by means of different models

with experimental data by Wood and Smith [38] in a thin

layer near the wall is shown in Fig. 2. The reported cases

are different because of the wall thermal flux, which is

63.05 kW/m2 for Test A and 204.91 kW/m2 for Test B.

Because of the high mass flow rate (Re = 9.3 · 105),

the pseudo-critical temperature is positioned near the

wall and it is well confined within a small buffer region.

In both tests the model of Bellmore and Reid underesti-

mates the wall temperature T w < T exp
w . This result par-

tially contradicts the conclusion of Lee and Howell

[37], which was probably due to the previously discussed

effects of coarse discretization. The proposed approach

for taking into account the effects of density fluctuations

has been applied together with both the standard k–�
model and the RNG k–� model. In both tests, the stan-

dard k–� model overestimates the wall temperature
Fig. 2. Comparison of predicted profiles of dimensionless

temperature calculated by means of different models with

experimental data of Wood and Smith [38] in a thin layer near

the wall. The reported cases are different because of the wall

thermal flux, which is 63.05 kW/m2 for Test A and 204.91 kW/

m2 for Test B. The label ‘‘RNG’’ means RNG k–� model and

the label ‘‘SKE’’ means standard k–� model. The reported

markers are not representative of grid nodes.
T w > T exp
w and the RNG k–� model produces the best re-

sults. The proposed approach allows formulating

numerical predictions of wall temperature which differ

from experimental data by ±20% (see Table 1).

The whole radial temperature profiles are reported

into Fig. 3. Also in this case, the numerical predictions

due to the proposed approach are in good agreement

with the experimental data. In both tests, the standard

k–� model better reproduces the dimensionless tempera-

ture profile in the bulk region, while RNG k–� model

better reproduces the wall temperature. For this reason,

in the next section both models will be considered.

4.2. Comparison with other predictions and

experimental data for average heat transfer coefficient

In this section, the numerical results will be compared

with some phenomenological correlations for estimating

the average heat transfer coefficients. In all these calcu-

lations, the effects due to the gravity field have been pur-

posely excluded in order to verify if buoyancy is

responsible for heat transfer impairment.

The operating conditions of the numerical simula-

tions were selected according to a proper design of

experiments [39]. For the present application, there are

five factors usually considered by all phenomenological

correlations: the working pressure p; the bulk tempera-

ture Tb(x); the wall temperature Tw(x); the diameter of

mini/micro channel d and finally the mass flow rate, G.

In the experimental runs, the wall temperature

Tw(x) = Tw will be assumed uniformly distributed along

the axial direction and the final goal will be the calcula-

tion of the wall thermal flux qw(x). The turbulence model

M completes the set of factors. The response is given by

the average heat transfer coefficient. In the present work,

the following definition will be adopted

aL ¼

R L
0
qw dx

� �	
L

ðh0 � hLÞ= lnðh0=hLÞ
; ð40Þ

where h0 = Tb(0) � Tw and hL = Tb(L) � Tw.

The main trends of the response was investigated by

means of a finite number of levels. Concerning the pres-

sure, a slightly supercritical pressure and a much higher

pressure are considered. Concerning the bulk tempera-

ture, the levels should allows us to investigate the effects

of pseudo-critical temperature. Let us consider the fol-

lowing function defined as

cwp ðT Þ ¼
1

T � T w

Z T

Tw

�hðT ; pÞdT . ð41Þ

The previous quantity allows us to define the specific

heat capacity at the wall cwwp ¼ limT!Tw
cwp ðT Þ and the

average specific heat capacity cwbp ¼ cwp ðT bÞ. Many

authors agree on the importance of the ratio cwbp =cwwp be-

tween the average and the wall specific heat capacity to



Table 1

Comparison among numerical predictions of local heat transfer coefficients, experimental data of Wood and Smith [38] (label ‘‘W&S’’)

and other numerical predictions of Lee and Howell [37] (label ‘‘L&H’’)

Parameters W&S (Exp.) L&H (B&R) This work (B&R) This work (RNG) This work (SKE)

Test A: qw = 63.05 kW/m2, Tb = 302.82 K, Re = 9.3 · 105

Tw (K) 305.76 305.60 305.29 305.94 306.51

a (kW/m2K) 21.45 23.88 25.53 20.21 17.09

ea (%) 0 +11.3 +19.0 �5.8 �20.3

Test B: qw = 204.91 kW/m2, Tb = 303.15 K, Re = 9.3 · 105

Tw (K) 327.37 323.20 320.97 323.38 331.88

a (kW/m2K) 8.46 10.62 11.50 10.13 7.13

ea (%) 0 +25.5 +35.9 +19.7 �15.7

The considered models are: the model of Bellmore and Reid [24] (label ‘‘B&R’’); the RNG k–� model (label ‘‘RNG’’) and the standard

k–� model (label ‘‘SKE’’). The best results are bold-faced.

Fig. 3. Comparison of predicted profiles of dimensionless

temperature calculated by means of different models with

experimental data of Wood and Smith [38] at a given axial

location. The reported cases differ are different because of the

wall thermal flux, which is 63.05 kW/m2 for Test A and

204.91 kW/m2 for Test B. The label ‘‘RNG’’ means RNG k–�

model and the label ‘‘SKE’’ means standard k–� model. The

reported markers are not representative of grid nodes.
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characterize heat transfer near the critical point

[9,13,15]. The ratio cwbp =cwwp discriminates the cases char-

acterized by Tb(x) � Tpc, which implies cwbp > cwwp , and

the other case characterized by Tw(x) � Tpc, which im-

plies cwbp < cwwp . The factorial design must take into ac-

count both configurations, too. Three inlet bulk

temperatures are selected: the first very close to the pseu-

do-critical value T0 � Tpc; the second, higher than previ-

ous one, so that the wall temperature can be close to the

pseudo-critical value Tw�Tpc and the third much higher.

Concerning wall temperature, the difference T0 � Tw

is increased far from the pseudo-critical temperature

where heat transfer is weaker. Since the effects due to
gravity field are neglected, Eq. (1) allows us to reduce

the number of free parameters. The buoyancy parameter

can be factorized Gr=Re20 ¼ BoTBoG, where

BoT ¼ qwq0 � q2
0

q2
pc

; ð42Þ

BoG ¼ p2

16

gq2
pcd

5

G2
. ð43Þ

Since the selected factorial design implies BoT 6

6.09 · 10�1, Eq. (1) reduces to BoG 6 1.64 · 10�3. In

the following BoG = 1.31 · 10�3 is assumed and two

levels for the mini/micro channel diameter (d < 2 mm),

or equivalently two levels for the mass flow rate, are

selected. Finally, three turbulence models are included:

the approach of Bellmore and Reid and the proposed

approach, together with both the RNG k–� model and

the standard k–� model. The previous assumptions

define a simplified 2 · 3 · 2 · 2 · 3 factorial design [39],

which requires 72 runs.

In Tables 2–5 the numerical predictions of the aver-

age heat transfer coefficient aL for the experimental runs

are reported. Concerning the turbulence modeling, the

standard k–� model systematically produces lower val-

ues for the average heat transfer coefficient in compari-

son with the RNG k–� model. In the previous section,

the fact that the standard k–� model overestimates the

effective temperature difference jTb � Twj has been al-

ready pointed out and it is consistent with the present re-

sults. Usually the average heat transfer coefficients

predicted by the RNG k–� model are slightly lower than

those due to the model of Bellmore and Reid, with the

exception of the experimental runs which are character-

ized by T0 � Tpc and which reveal a reverse trend. When

the pseudo-critical temperature is close to bulk temper-

ature, the radial temperature profile looks similar to a

step function and the RNG k–�model allows us to prop-

erly describe this strained flow. Concerning the inlet

temperature difference jT0 � Twj, the location of the

pseudo-critical temperature plays an important part.



Table 2

Numerical predictions of average heat transfer coefficient aL for experimental runs 1–18 defined by the factorial design

Factorial design Results

p (MPa) T0 (K) Tw (K) d (mm) G (g/s) M qw (kW/m2) jDTbj (K) aL (kW/m2K)

1 7.412 305 302 0.787 0.571 B&R 111.92 0.69 42.359

2 7.412 305 302 0.787 0.571 RNG 115.57 0.69 43.803

3 7.412 305 302 0.787 0.571 SKE 99.38 0.67 37.519

4 7.412 305 298 0.787 0.571 B&R 172.60 1.97 28.955

5 7.412 305 298 0.787 0.571 RNG 176.55 2.19 30.244

6 7.412 305 298 0.787 0.571 SKE 159.10 1.38 25.307

7 7.412 312 309 0.787 0.571 B&R 18.71 2.33 12.004

8 7.412 312 309 0.787 0.571 RNG 17.52 2.19 10.484

9 7.412 312 309 0.787 0.571 SKE 15.91 2.01 8.772

10 7.412 312 305 0.787 0.571 B&R 58.35 5.65 16.991

11 7.412 312 305 0.787 0.571 RNG 54.49 5.41 14.972

12 7.412 312 305 0.787 0.571 SKE 48.65 5.02 12.236

13 7.412 360 353 0.787 0.571 B&R 17.55 6.01 5.704

14 7.412 360 353 0.787 0.571 RNG 16.76 5.74 5.013

15 7.412 360 353 0.787 0.571 SKE 15.87 5.44 4.383

16 7.412 360 340 0.787 0.571 B&R 50.23 16.56 5.344

17 7.412 360 340 0.787 0.571 RNG 49.86 16.47 5.243

18 7.412 360 340 0.787 0.571 SKE 47.12 15.60 4.575

The lowest supercritical pressure (7.412 MPa) and the smallest mini/micro channel diameter (0.787 mm) are considered. The adopted

models are: the model of Bellmore and Reid [24] (label ‘‘B&R’’); the RNG k–�model (label ‘‘RNG’’) and the standard k–�model (label

‘‘SKE’’). The pseudo-critical temperature is Tpc = 304.328 K.
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The experimental runs #4 and #10 (see Table 2) share

the same inlet temperature difference jT0 � Twj = 7 K

but for the first run Tb(0) � Tpc, which implies

cwbp =cwwp ¼ 3.94, while for the second run Tw � Tpc,

which implies cwbp =cwwp ¼ 0.35. The effect on the average

heat transfer coefficient is impressive: aL = 28.96 kW/

m2K for the experimental run #4 and aL = 16.99 kW/

m2K for the experimental run #10. This confirms the

common practice to include the ratio cwbp =cwwp in the phe-

nomenological correlations and to assign it a positive

exponent interpolating the experimental data. Concern-

ing the diameter of the mini/micro channel, or equiva-

lently the mass flow rate, the factorial design is based

on the assumption to keep the parameter BoG, given

by Eq. (43), fixed so as to satisfy the threshold which al-

lows us to neglect the buoyancy effects. This means that

G2/d5 is constant and then the inlet bulk velocity u0 /
G/d2 / d1/2 modestly increases by doubling the diameter

of mini/micro channel. Concerning the supercritical

pressure, the peak of the specific heat capacity at the

pseudo-critical temperature enhances the convective

heat transfer and the enhancement is proportional to

the magnitude of the peak. The experimental runs #19

(see Table 3) and #55 (see Table 5) are both character-

ized by Tb(0) � Tpc, so that cwbp =cwwp > 1. The effective

temperature difference for the first experimental run

jT0 � Twj = 3 K is smaller than the one for the second
experimental run jT0 � Twj = 10 K. In spite of this, the

predicted wall thermal fluxes are comparable:

qw = 131.5 kW/m2 for the experimental run #19 and

qw = 103.21 kW/m2 for the experimental run #55. The

lowest supercritical pressure, considered by the first

experimental run, causes the specific heat capacity to

strongly change in the radial direction (cwbp =cwwp ¼ 4.62)

while the highest supercritical pressure is much less effec-

tive in doing the same (cwbp =cwwp ¼ 1.17).

In Table 6 the numerical results are compared with

other numerical predictions and some phenomenological

correlations. The correlation proposed by Petrov and

Popov [10] is included within the numerical results, be-

cause it was developed by interpolation of some numer-

ical simulations. At least for the selected factorial design,

the proposed approach reasonably reproduces both re-

sults due to Petrov and Popov and results due to the

model of Bellmore and Reid, if the standard k–� model

and the RNG k–� model are assumed respectively. This

means that the proposed approach is general enough to

reproduce different models independently developed.

In Table 6, the experimental correlations due to Liao

and Zhao [13], Pettersen et al. [11], Pitla et al. [12] and

Yoon et al. [15] are considered too. The first correlation

was specifically developed for a single mini/micro chan-

nel. The second one derives from some experimental

tests on a flat extruded tube, which involves many



Table 3

Numerical predictions of average heat transfer coefficient aL for experimental runs 19–36 defined by the factorial design

Factorial design Results

p (MPa) T0 (K) Tw (K) d (mm) G (g/s) M qw (kW/m2) jDTbj (K) aL (kW/m2K)

19 7.412 305 302 1.417 2.482 B&R 131.49 0.63 49.242

20 7.412 305 302 1.417 2.482 RNG 162.26 0.66 61.020

21 7.412 305 302 1.417 2.482 SKE 134.35 0.64 50.341

22 7.412 305 298 1.417 2.482 B&R 231.75 0.67 34.806

23 7.412 305 298 1.417 2.482 RNG 280.40 0.70 42.188

24 7.412 305 298 1.417 2.482 SKE 239.90 0.67 36.035

25 7.412 312 309 1.417 2.482 B&R 26.47 1.43 11.968

26 7.412 312 309 1.417 2.482 RNG 26.22 1.41 11.813

27 7.412 312 309 1.417 2.482 SKE 22.94 1.22 9.875

28 7.412 312 305 1.417 2.482 B&R 79.42 3.75 16.256

29 7.412 312 305 1.417 2.482 RNG 80.34 3.79 16.522

30 7.412 312 305 1.417 2.482 SKE 69.42 3.67 13.521

31 7.412 360 353 1.417 2.482 B&R 27.84 3.98 5.879

32 7.412 360 353 1.417 2.482 RNG 26.89 3.85 5.574

33 7.412 360 353 1.417 2.482 SKE 24.43 3.50 4.838

34 7.412 360 340 1.417 2.482 B&R 82.92 11.54 6.183

35 7.412 360 340 1.417 2.482 RNG 79.99 11.15 5.850

36 7.412 360 340 1.417 2.482 SKE 72.80 10.18 5.088

The lowest supercritical pressure (7.412 MPa) and the biggest mini/micro channel diameter (1.417 mm) are considered. The adopted

models are: the model of Bellmore and Reid [24] (label ‘‘B&R’’); the RNG k–�model (label ‘‘RNG’’) and the standard k–�model (label

‘‘SKE’’). The pseudo-critical temperature is Tpc = 304.328 K.

Table 4

Numerical predictions of average heat transfer coefficient aL for experimental runs 37–54 defined by the factorial design

Factorial design Results

p (MPa) T0 (K) Tw (K) d (mm) G (g/s) M qw (kW/m2) jDTbj (K) aL (kW/m2K)

37 12.000 327 317 0.787 0.571 B&R 67.21 6.78 11.232

38 12.000 327 317 0.787 0.571 RNG 70.36 7.13 12.322

39 12.000 327 317 0.787 0.571 SKE 64.91 6.53 10.518

40 12.000 327 307 0.787 0.571 B&R 133.53 15.18 12.519

41 12.000 327 307 0.787 0.571 RNG 132.12 14.98 12.189

42 12.000 327 307 0.787 0.571 SKE 123.04 13.70 10.374

43 12.000 347 337 0.787 0.571 B&R 52.14 8.08 10.658

44 12.000 347 337 0.787 0.571 RNG 49.65 7.75 9.549

45 12.000 347 337 0.787 0.571 SKE 45.76 7.21 8.097

46 12.000 347 327 0.787 0.571 B&R 112.99 15.24 10.641

47 12.000 347 327 0.787 0.571 RNG 118.00 15.75 11.606

48 12.000 347 327 0.787 0.571 SKE 108.26 14.75 9.815

49 12.000 360 353 0.787 0.571 B&R 25.11 5.54 7.101

50 12.000 360 353 0.787 0.571 RNG 25.22 5.56 7.176

51 12.000 360 353 0.787 0.571 SKE 23.58 5.22 6.181

52 12.000 360 340 0.787 0.571 B&R 81.61 16.01 8.214

53 12.000 360 340 0.787 0.571 RNG 82.68 16.18 8.460

54 12.000 360 340 0.787 0.571 SKE 76.88 15.23 7.237

The highest supercritical pressure (12.0 MPa) and the smallest mini/micro channel diameter (0.787 mm) are considered. The adopted

models are: the model of Bellmore and Reid [24] (label ‘‘B&R’’); the RNG k–�model (label ‘‘RNG’’) and the standard k–�model (label

‘‘SKE’’). The pseudo-critical temperature is Tpc = 327.1 K.
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Table 5

Numerical predictions of average heat transfer coefficient aL for experimental runs 55–72 defined by the factorial design

Factorial design Results

p (MPa) T0 (K) Tw (K) d (mm) G (g/s) M qw (kW/m2) jDTbj (K) aL (kW/m2K)

55 12.000 327 317 1.417 2.482 B&R 103.21 4.18 13.367

56 12.000 327 317 1.417 2.482 RNG 109.08 4.43 14.411

57 12.000 327 317 1.417 2.482 SKE 95.39 3.85 12.048

58 12.000 327 307 1.417 2.482 B&R 219.42 9.52 14.898

59 12.000 327 307 1.417 2.482 RNG 213.88 9.25 14.354

60 12.000 327 307 1.417 2.482 SKE 189.73 8.07 12.147

61 12.000 347 337 1.417 2.482 B&R 84.63 5.67 12.489

62 12.000 347 337 1.417 2.482 RNG 76.78 5.18 10.821

63 12.000 347 337 1.417 2.482 SKE 67.98 4.63 9.128

64 12.000 347 327 1.417 2.482 B&R 177.25 10.18 12.753

65 12.000 347 327 1.417 2.482 RNG 184.83 11.20 13.545

66 12.000 347 327 1.417 2.482 SKE 162.97 10.09 11.340

67 12.000 360 353 1.417 2.482 B&R 43.97 4.07 9.410

68 12.000 360 353 1.417 2.482 RNG 39.62 3.68 8.033

69 12.000 360 353 1.417 2.482 SKE 35.58 3.32 6.890

70 12.000 360 340 1.417 2.482 B&R 130.84 11.27 9.622

71 12.000 360 340 1.417 2.482 RNG 130.56 11.25 9.592

72 12.000 360 340 1.417 2.482 SKE 116.80 10.18 8.162

The highest supercritical pressure (12.0 MPa) and the biggest mini/micro channel diameter (1.417 mm) are considered. The adopted

models are: the model of Bellmore and Reid [24] (label ‘‘B&R’’); the RNG k–�model (label ‘‘RNG’’) and the standard k–�model (label

‘‘SKE’’). The pseudo-critical temperature is Tpc = 327.1 K.

Table 6

Comparison among numerical predictions for average heat transfer coefficients, some phenomenological correlations [13,11,12,15] and

other numerical predictions [10]

Experimental correlations Numerical predictions

Mean ± standard deviation eLa ¼ ðaL � aexpL Þ=aexpL (%)

Petrov & Popov correlation This work

B&R RNG SKE

Liao & Zhao 50.6 ± 34.6 79.1 ± 48.3 49.7 ± 34.8 76.2 ± 39.2

Pettersen et al. 6.7 ± 25.4 25.9 ± 27.1 5.1 ± 18.6 24.1 ± 23.3

Pitla et al. 8.0 ± 36.1 25.5 ± 23.7 6.3 ± 25.9 25.4 ± 31.7

Yoon et al. �37.6 ± 6.2 �25.8 ± 11.8 �37.9 ± 6.2 �26.8 ± 7.4

The considered models are: the model of Bellmore and Reid [24] (label ‘‘B&R’’); the RNG k–� model (label ‘‘RNG’’) and the standard

k–� model (label ‘‘SKE’’).

3876 P. Asinari / International Journal of Heat and Mass Transfer 48 (2005) 3864–3879
mini/micro channels along axial directions. The correla-

tion of Pitla et al. improves the previous one by averag-

ing the results obtained with constant properties

evaluated at the wall and bulk temperature. Unfortu-

nately this practice shifts the peak of the average heat

transfer coefficient from the pseudo-critical temperature

and it is not consistent with any theoretical explanation.

Finally the correlation of Yoon et al. has been recently

developed for normal-sized ducts.

First of all, the numerical results seem to show that

the buoyancy effects are not completely responsible for

heat transfer impairment measured by Liao and Zhao
for mini/micro channels. Despite the fact that the gravity

field is completely neglected by numerical simulations,

the final predictions systematically overestimate the re-

sults due to the correlation of Liao and Zhao. If the

experimental data are reliable, some additional terms

must be included into the model to justify the heat trans-

fer impairment for mini/micro channels. Secondly, if a

preference among phenomenological correlations on

the basis of numerical results is needed, the results due

to the RNG k–� model and the standard k–� model

can be grouped together, as reported in Fig. 4. The

grouped results express a moderate preference for the



Fig. 4. The average heat transfer coefficients obtained by both

the RNG k–� model and the standard k–� model are jointly

reported, in order to duplicate the predictions for the same run.

Some phenomenological correlations are considered [13,11,15].

For each subplot, the numerical error due to comparison with a

phenomenological correlation is reported too, in terms of mean

value and standard deviation.

Fig. 5. Radial profile of the corrective factor for turbulent

diffusivities due to density fluctuations in a thin layer near the

wall, according to the model of Bellmore and Reid [24]. Cooling

conditions are considered. The reported markers are represen-

tative of grid nodes.

Fig. 6. Normalized radial component of the characteristic

velocity for density fluctuations at the same locations, accord-

ing to different models. The model of Bellmore and Reid (label

‘‘B&R’’) and the suggested approach together with RNG k–�

model (label ‘‘RNG’’) are considered. The reported markers are

representative of grid nodes.
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correlation proposed by Pettersen et al. [11]. This result

is not conclusive because the experimental measure-

ments for a single mini/micro channels should be more

reliable than the measurements for a flat extruded tube.

Anyway some numerical predictions show that the

transverse non-homogeneities for a flat extruded tube

are much more smaller than it could have been initially

supposed [40].

Some concluding remarks on additional turbulent

terms due to time averaging of density fluctuations are

discussed. In Fig. 5 the corrective factor for turbulent

diffusivities due to density fluctuations is reported.

According to the assumed boundary conditions, the

transverse sections of a mini/micro channel closer to

the inlet are characterized by stronger radial tempera-

ture gradients. This means they have higher indexes of

intensity for density fluctuations rBR and consequently

more effective corrective factors for turbulent diffusivi-

ties /BR. Nevertheless, the maximum correction re-

ported in Fig. 5 is less than 3%. This threshold is even

smaller for the proposed approach because j/ � 1j 	
j/BR � 1j, as previously discussed. In Fig. 6 some results

are reported for radial component of the characteristic

velocity for density fluctuations, according to different

models. The formal expression of the radial component

of the characteristic velocity for both models is the same

�v� ¼ �v�BR, as it can be easily verified by considering Eqs.

(37) and (39). An estimation of the axial component of
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the characteristic velocity can be obtained by means of

the radial component for both the models, recalling that

�u� 	 �u�BR ¼ �v�BR. The RNG k–� model overestimates the

radial component modulus of the characteristic velocity

for the sections closer to the inlet, while it underesti-

mates the same quantity proceeding along the mini/

micro channel. Despite the fact that density fluctuations

strongly effect the radial velocity component, as it is evi-

dent recalling that �v � ��v�, the final result on the aver-

age heat transfer coefficients is quite moderate. These

results confirm that the boundary layer theory can be

suitably applied in the present application.
5. Conclusions

A new approach to take into account the effects on

turbulence of variable physical properties due to close-

ness to the critical point has been proposed, by general-

izing the decomposition originally considered by the

model of Bellmore and Reid. This approach allows us

to freely choose the turbulence model for usual terms

coming from time averaging of velocity fluctuations

and to describe coherently the additional terms due to

density fluctuations.

Numerical calculations based on the proposed ap-

proach and on the original model have been performed

for carbon dioxide flowing within mini/micro channels

under cooling conditions. In comparison with existing

calculations, some improvements have been considered:

an updated database for thermophysical properties near

the critical point; some differential equations to investi-

gate the effects of variable thermophysical properties

on turbulence; different turbulence closure models for

usual terms and for additional terms due to density fluc-

tuations. These refinements do not substantially improve

the existing results. This means that for the considered

application the effects due to density fluctuations are

smaller than it could have been initially supposed on

the basis of some interpretations [13]. The comparison

with phenomenological correlations confirms that a heat

transfer impairment for mini/micro channels exists but it

is smaller than the impairment which has been measured

by some experiments. The results are not completely

exhaustive because of the discrepancies among different

correlations due to the coupling between heat transfer

and fluid flow. For this reason, some recent attempts

[41] to adopt a neural network regression technique in

order to interpolate the experimental results concerning

the convective heat transfer near the critical point ap-

pear greatly promising.
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